Towards Realistic Mobile Test Generation

*
Ke Mao
CREST Centre, Department of Computer Science
University College London, Malet Place, London, WC1E 6BT, UK
k.mao@cs.ucl.ac.uk

ABSTRACT

Generating realistic tests is a major challenge of testing mo-
bile applications. Most existing mobile test generation tech-
niques do not optimise realism of tests, which may generate
test cases with undesired properties, such as over long se-
quences, too frequent events, unnatural sequence patterns.
These unrealistic tests introduce difficulties to developers
when debugging. This work proposes an approach to gen-
erate realistic tests with a natural/non-intrusive execution
framework. The approach aims to automate the real-world
manual mobile testing process performed by test experts
and end users, while revealing faults with generated realis-
tic tests.

CCS Concepts

eSoftware and its engineering — Software testing
and debugging; Search-based software engineering;

Keywords

mobile testing; realistic; search-based testing;

1. INTRODUCTION

Accompanying the wide-spread growth in mobile device
ownership and the number of mobile apps [2,3], mobile test-
ing activities are highly demanded. However several new
features pose emerging challenges to mobile app testing:
Mobile devices enable rich user interaction inputs such as
gestures via touch screens and various signals via sensors
(GPS, accelerometer, barometer, NFC, etc.). They serve a
wide range of users in heterogeneous and dynamic contexts
such as geographical locations and networking infrastruc-
tures. Complex interactions with various sensors under a
wide range of testing contexts are required. A recent sur-
vey work on mobile app development indicates that current

*Ke Mao is supervised by Prof. Mark Harman and Prof.
Licia Capra, and he also works with Dr. Yue Jia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00
DOL: 10.475,/123_4

mobile app testing in practice heavily rely on manual test-
ing [20]. Although a few frameworks from the industry (such
as Appium [1], Robotium [4], UTAutomator [5]) can support
the automatic execution of test cases. They rely on human
to write the testing scripts. Moreover, it is expensive to
maintain these scripts as the apps under development are
subject to frequent changes.

Many automated testing techniques have been proposed in
Android testing research [8,9,14,16,24,25,27,28,29], however
all of these techniques use intrusive approaches to execute
the generated test cases, requiring developer permissions to
perform the testing which is not always available. Many of
them also need to modify the app code or even the mobile
systems. This may partially explain why the open-sourced
Android platform were used in these research, rather than
iOS or other mobile platforms.

This work focus on realistic test generation with non-
intrusive test execution. It aims to address the following
research questions:

RQ1 (Realism differential): What are the differences
on realism, between the test cases that are automatically
generated (by the state-of-the-art approaches) and those are
generated by real-world test experts or users?

RQ2 (Realism modelling): Can we model realistic tests
by proposing a set of realism metrics (e.g., test event type,
event frequency, event parameter, sequence length, sequence
pattern, replicablity) to capture their characteristics?

RQ3 (Realistic test generation): Can we automatically
generate realistic test cases by searching a refined solution
space, based on the realistic test case model?

RQ4 (Impact evaluation): What are the differences on
the fault detection capability, between automatically gener-
ated realistic and unrealistic test cases? How do developers
values the faults identified by corresponding types of test
cases?

The hypothesis for this work is that automatically gener-
ated test cases generally differ from those used by real-world
testing (e.g., manual exploratory testing, end-user testing),
when assessed from a set of ‘realism’ metrics. These ‘un-
realistic test cases’ can be less valuable to developers even
if they can reveal faults. Also, previous intrusive execution
of these test cases are unnatural and cannot satisfy certain
testing scenarios. By using a ‘realism’ guided search, real-
istic test cases can be generated and executed in a natural
way to simulate the testing that happened in the real-world.

Expected contributions. This work are expected to
contribute on the following aspects:

1) A set of novel metrics to model the realism of test cases;

2) The empirical evidence on the role of realism in test
generation;

3) The empirical evidence on the necessary application
scenarios of non-intrusive testing, which is neglected in pre-
vious research;

4) A search-based approach to realistic test generation.
The approach uses genetic improvement to extend existing
test cases and further search for new test cases via a refined
search space with realism constraints. The execution of the
generated test cases are performed in a non-intrusive way to
further simulate real-world testing performed by test experts
and users.

2. RELATED WORK AND MOTIVATION

There are several existing studies and tools for mobile
testing. A taxonomy of mobile testing is shown in Figure 1.

2.1 Mobile Test Generation Techniques

Mobile test generation aims to automatically generate and
execute test inputs, to help developers detect potential fail-
ures and fix them before the release of the app. These in-
puts are usually events as mobile apps are event-driven. The
events can be either system events such as screen-shooting,
volume-adjusting, or Ul events such as clicks and gestures.
Existing mobile test generation techniques and tools basi-
cally fall into four categories. Most of these research work
are based on the Android platform due to its open-source
nature and dominating market share.

Record-replay approaches: Record-replay approaches
generate realistic test cases, however they require human
effort. SPAG [21] is a record-replay technique for testing
mobile apps. It is backed with event batch and smart wait
features for accurately and reliably reproducing the recorded
tests. SPAG-C [22] further extends SPAG by using com-
puter vision techniques to perform test oracle comparison.

Random approaches: Random strategies are widely
used in practice for fuzz testing. Android Monkey [15] is a
built-in tool of the Android platform, which is developed by
Google. It randomly seeds various types of Android events
into the system. Dynodroid [24] also randomly explore the
app, but with two designed strategy call BiasedRandom
and Frequency. The BiasedRandom strategy adjusts the
weights of different events by considering the contexts that
the events are associated with. The Frequency strategy en-
ables the generation of events that are least frequently se-
lected. Dynodroid supports the generation of both UI and
system events. Its implementation is publicly available.

Model-based approaches: GUIRipper [9] crawls the
GUI of an app. It constructs a model of the user interface
dynamically, by dumping the Ul element on each execu-
tion states. The traversal strategy of the crawler follows
the depth-first-search (DFS) algorithm. The limitation of
this tool is that it cannot generate system events. This tool
is public but not open-sourced. It is known as MobiGUI-
TAR [8] later. PUMA [16] is a framework for implementing
various strategies to explore the app based on a finite state
machine (FSM) representation. It contains the Monkey ex-
ploration strategy and can be easily extended by directing
the transition of the FSM model. SwiftHand [14] also dy-
namically builds a FSM model of the GUI. Its contribution
focuses on minimizing the restart times when exploring the
app, while maximizing the test coverage.

Systematic approaches: Sapienz [27] is a recently pro-

Mobile

Testing
Mobile App Mobile Device

Testing Testing

Test Test
Generation Execution

Record- | | Random || Model- || System- || Reuse- Intrusive Non-
Replay -based based atic based intrusive
Program Search- Combination
analysis based -based

Figure 1: A taxonomy of mobile testing.

posed technique for multi-objective test generation, which
minimises test sequence length while maximising coverage
and fault revelation. It uses a combination of high-level
‘motif genes’ and low-level ‘atomic genes’ to effectively ex-
plore the app. EvoDroid [25] is the first search-based testing
framework Android apps. It extracts both interface models
vis static resource analysis and call graph models via code
analysis. It regards an event sequence as an individual to
perform genetic make-up and generates test inputs based
on an evolutionary algorithm. ORBIT [29] is designed to
generate only relevant Ul events. It achieves this by using
both GUI ripping and static code analysis techniques. This
tool is not public available. ACTEwve [10] is based on sym-
bolic execution. It mitigates the path explosion problem by
identifying subsumption conditions among test sequences.
A®E [11] implements two app exploration strategies: the
depth-first search strategy and the targeted strategy to de-
sired activities of the app. The targeted strategy is based on
taint analysis, to construct the app’s static activity transi-
tion graph. Only the first strategy is available in its publicly
available implementation.

Reuse-based approaches: Previously manually writ-
ten or automated generated test cases are reused for deriv-
ing new tests which may be executed in various background
conditions. Thor [6] itself does not generate new test cases.
Instead, it reuses existing test cases and executes them in
adverse conditions, such as sensor status changes or mobile
operation system inference.

2.2 Realistic Test Generation

Generally, there is a lack of research on realistic test gen-
eration, especially for mobile testing. For Android testing,
MonkeyLab [23] generates test cases based on the app usage
data. There are a limited number of previous studies aim-
ing at realistic test generation, however they are designed
for testing web applications or Java programmes [7,12,13].

Furthermore, there is a neglect on realistic test execution
of the automatically generated test cases. When executing
these generated test cases, existing techniques usually adopt
intrusive approaches. Intrusive approaches require modifi-
cation behaviours on either the app under test or the mobile
operation system or both of them. The actions generated by
this kind of testing are though simulated signals rather than
those triggered via real sensors (e.g., touch-screen, gravity-
sensor) on the mobile device. The advantages of the intru-

Realistic Test Generator
AUT 21 palyser P valmtor
Evolu-
v tionary
Realistic Realism Search Realism
Test Cases Model Evaluator

Realistic Test Executor

. State
Test Filter (<= Controller [<— Interpretor Logger
7 4 Oracle
Robotic Arm Mobile Device Camera Comparator

ﬂ_(&) D I ’k Object

/[\ Detector

Figure 2: A framework for realistic test generation.

sive approaches are obvious regarding the simulated oper-
ation signals: First, it is easier to simulate the operation
signal rather than to actually trigger them via hardware.
Second, simulation leads to almost no cost on instrumenta-
tion and execution hardware. Third, simulated signals are
reliable and can be executed accurately. There are also sev-
eral limitations on intrusive testing: First, the necessary
precondition on modifying the mobile system (or requir-
ing developer/root permission) cannot be always satisfied
in real-world testing scenarios (e.g., testing a safety-critical
system). Second, it is not suitable when testing the mobile
device itself or the mobile operation system itself. Third,
since the operation signal is simulated, the testing on the
coordination between the hardware and the app cannot be
covered. Fourth, one simulated signal (e.g., app switch) may
require several operation steps in the real-world. It is pos-
sible that a serial of frequent simulated signals could never
happen in real-world testing.

3. APPROACH AND EVALUATION

In this section, we present the proposed approach in ad-
dressing our research questions. The approach is consisted
of two stages: realism modelling regarding RQ1 and RQ2
and realistic test generation regarding RQ3 and RQ4.

3.1 Realism Modelling

To answer RQ1, we propose to conduct an empirical study
on analysing the realism differences between the automati-
cally generated test cases and those manually generated by
test experts and end-users. We first collect these two types
of test cases: We collect automatically generated test cases
from the state-of-the-art techniques on mobile testing. We
collect potential realistic test cases from three sources: by
mining usage traces from real-world end users; by mining
manual test events generated by real-world test experts; and
by reusing existing test cases written by testers. To validate
the realism on these two types of test cases, we ask develop-
ers to manually label the realism of the test cases. Inter-rater
agreement is used to ensure that the rating is reliable. Then
we compare the labelled data to see if there is any difference
on the realism rating of these two types of test cases.

In addressing RQ2, we first calculate a comprehensive list
of properties of test cases, and compare the differences be-

tween realistic and unrealistic test cases. Further statistical
analysis on the dataset is conducted. Hence significant fac-
tors that corresponds to the realism of test cases can be
highlighted. We further propose a model to capture the
realism underlying the real-world test cases. For example,
string realism as part of the model, can be captured by a
NLP model to generate readable strings [7].

3.2 Realistic Test Generation

In addressing RQ3, we propose a framework for realis-
tic test generation, as shown in Figure 2. The framework
contains two high-level components: the ‘realistic test gen-
erator’ for generating realistic test case candidates, and the
‘realistic test executor’ for further filtering the test cases,
depending on whether they are executable in a real-world
setting.

Realistic test generator. The realistic test generator
starts by analysing the application under test (AUT). The
extracted information of the AUT is used to adjust the re-
alism model. The realism model together with the AUT are
passed into the evolutionary search component for generat-
ing and evolving test cases. The source of ‘realism’ for the
individuals being evolved comes from two ways: first, by
reusing and extending realistic test cases (e.g., Robotium or
Appium test scripts) manually written by the app testers;
second, by searching a solution space constrained by the re-
alism model. For the first case, we use genetic improvement
to extend these existing test cases. For the second case, the
realism model is used together with a mobile event generator
to guide the search toward generating test sequences with
realistic properties. The fitness of the generated potential
realistic test cases are evaluated based on their performance
(such as code coverage) and realism rating (which may be a
suitable task to be crowdsourced [26]).

Realistic test executor. The generated realistic test
case candidates are further validated by actually executing
them in a real-world/physical way, which is as natural as
those performed by end-users or manual testers. The real-
istic test executor first interprets the coded test scripts into
machine executable commands. The controller receives the
commands and executes them on a robotic arm. The arm in-
teracts with the mobile device non-intrusively. This process
needs Inverse Kinematics and Calibration in order to make
the arm act accurately. A camera is used to monitor the
mobile device states. Collected image data is further pro-
cessed via computer vision techniques for Object Detection
and Oracle Comparison. The overall process data logged in
the execution process is finally sent to a test filter for judging
whether the candidate test case should be filtered out.

The evaluation of the proposed approach will be con-
ducted on three types of subjects: real-world open source
apps, closed source apps and cross platform apps. We will
generate realistic test cases by using our approach and gen-
erate unrealistic test cases by using the state-of-the-art ap-
proaches for mobile testing. A set of performance metrics
will be measured to assess the test cases. The assessment
will not only be based on the performance metrics but also
based on the their values to developers: we will conduct
an empirical study by sending the revealed faults together
with the corresponding test cases to developers, to see which
techniques can generate more developer favoured test cases.
The experimental results and the empirical study will lead
to the answer for RQA4.

4. RESEARCH STATUS

This work is planed as a part of my PhD thesis. Before
this work, we have performed a brief survey on mobile app
testing and a comprehensive survey on relevant techniques
that may help to generated realistic test cases. We have
investigated the use of search-based techniques [17,18,19] for
generating test cases for mobile apps. Promising results have
been achieved [27]. We have also implemented a prototype
of the ‘realistic test executor’ described in Section 3.2.

S. CONCLUSION AND FUTURE WORK

In this work, we proposed to generate realistic test cases
for mobile testing. The first stage of this work aims to model
the realism underlying real-world test cases; the second stage
focuses on generating realistic test cases based on the built
model and further execute them in a non-intrusive way. Fu-
ture work will be directed towards implementing the pro-
posed approach and conducting studies to answer the pro-
posed research questions.

6. ACKNOWLEDGMENTS

Ke Mao is funded by the UCL GRS and the UCL ORS
scholarships. This work is also supported by the Dynamic
Adaptive Automated Software Engineering (DAASE) pro-
gramme grant (EP/J017515).

7. REFERENCES

[1] Appium: Automation for iOS and Android apps.
http://appium.io.

[2] Global PC sales fall to eight-year low. http:
//www.statista.com/chart/4231/global-pc-shipments.

[3] Global smartphone shipments forecast from 2010 to
2019. http://www.statista.com/statistics/263441/
global-smartphone-shipments-forecast.

[4] Robotium: User scenario testing for Android.
https://github.com/RobotiumTech/robotium.

[5] UIAutomator. https://developer.android.com/tools/
testing-support-library/index.html.

[6] C. Q. Adamsen, G. Mezzetti, and A. Mgller.
Systematic execution of Android test suites in adverse
conditions. In Proc. of ISSTA’15, pages 83-93, 2015.

[7] S. Afshan, P. McMinn, and M. Stevenson. Evolving
readable string test inputs using a natural language
model to reduce human oracle cost. In Proc. of
1CST’13, pages 352-361, March 2013.

[8] D. Amalfitano, A. Fasolino, P. Tramontana, B. Ta,
and A. Memon. MobiGUITAR: Automated
model-based testing of mobile apps. IEEE Software,
32(5):53-59, 2015,

[9] D. Amalfitano, A. R. Fasolino, P. Tramontana,

S. De Carmine, and A. M. Memon. Using GUI ripping
for automated testing of Android applications. In
Proc. of ASE’12, pages 2568261, 2012.

[10] S. Anand, M. Naik, M. J. Harrold, and H. Yang.
Automated concolic testing of smartphone apps. In
Proc. of ESEC/FSE’12, pages 59:1-59:11, 2012.

[11] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of Android apps. In
Proc. of OOPSLA’13, pages 641-660, 2013.

[12] M. Bozkurt and M. Harman. Automatically
generating realistic test input from web services. In
Proc. of SOSE’11, pages 13-24, 2011.

[13] M. Bozkurt and M. Harman. Optimised realistic test
input generation using web services. In Proc. of
SSBSE’12, pages 105-120, Riva del Garda, Italy, 2012.

[14] W. Choi, G. Necula, and K. Sen. Guided GUI testing
of android apps with minimal restart and approximate
learning. In Proc. of OOPSLA’13, pages 623-640,
2013.

[15] Google. Android Monkey.
http://developer.android.com/tools/help/monkey.html.

[16] S. Hao, B. Liu, S. Nath, W. G. Halfond, and
R. Govindan. PUMA: Programmable Ul-automation
for large-scale dynamic analysis of mobile apps. In
Proc. of MobiSys’14, pages 204-217, 2014.

[17] M. Harman. The current state and future of search
based software engineering. In Proc. of FOSE’07,
pages 342-357, 2007.

[18] M. Harman and B. F. Jones. Search-based software
engineering. Information and software Technology,
43(14):833-839, 2001.

[19] M. Harman and P. McMinn. A theoretical and
empirical study of search-based testing: Local, global,
and hybrid search. IEEE Transactions on Software
Engineering, 36(2):226-247, 2010.

[20] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real
challenges in mobile app development. In Proc. of
ESEM’13, pages 15-24, 2013.

[21] Y.-D. Lin, E.-H. Chu, S.-C. Yu, and Y.-C. Lai.
Improving the accuracy of automated GUI testing for
embedded systems. IEEE Software, 31(1):39-45, 2014.

[22] Y.-D. Lin, J. Rojas, E.-H. Chu, and Y.-C. Lai. On the
accuracy, efficiency, and reusability of automated test
oracles for Android devices. IEEE Transactions on
Software Engineering, 40(10):957-970, October 2014.

[23] M. Linares-Vasquez, M. White, C. Bernal-Cardenas,
K. Moran, and D. Poshyvanyk. Mining Android app
usages for generating actionable GUI-based execution
scenarios. In Proc. of MSR’15, 2015.

[24] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid:
An input generation system for Android apps. In
Proc. of ESEC/FSE’13, pages 224-234, 2013.

[25] R. Mahmood, N. Mirzaei, and S. Malek. EvoDroid:
Segmented evolutionary testing of Android apps. In
Proc. of ESEC/FSE’14, pages 599-609, 2014.

[26] K. Mao, L. Capra, M. Harman, and Y. Jia. A survey
of the use of crowdsourcing in software engineering.
Technical Report RN/15/01, Department of Computer
Science, University College London, 2016.

[27] K. Mao, M. Harman, and Y. Jia. Sapienz:
Multi-objective automated testing for Android
applications. In ISSTA’16, 2016. to appear.

[28] N. Mirzaei, S. Malek, C. S. Pisireanu, N. Esfahani,
and R. Mahmood. Testing Android apps through
symbolic execution. SIGSOFT Software Engineering
Notes, 37(6):1-5, 2012.

[29] W. Yang, M. R. Prasad, and T. Xie. A grey-box
approach for automated GUI-model generation of
mobile applications. In Proc. of FASE’13, pages
250-265, 2013.

